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ABSTRACT
Our propose in this paper is to introduce the new classes for
separation axioms in topological spaces by using βω−open
sets and Gβω−open sets, called βω−separation axioms and
Gβω−separation axioms. Furthermore, we introduce the stronger
form of connected spaces.
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1. INTRODUCTION
In 1982 Hdeib [4] introduced the notion of a ω−open sets. A subset
A of a space X is called ω−open set if for each x ∈ A, there is an
open set Ux containing x such that Ux −A is a countable set. The
complement of a ω−open set is called a ω−closed set. In 1983
the authors [7] introduced the weak form for an open set which is
called a β−open set. A subset A of a space X is called a β−open
set if A ⊆ Cl(Int(Cl(A))). The complement of a β−open set
is called a β−closed set. In 2005 Al-Zoubi [6] introduced the
generalization property of ω−open sets. A subset A of a space
X is called generalized ω−closed set if Clω(A) ⊆ U whenever
A ⊆ U and U is open set. The complement of generalized
ω−closed set is called generalized ω−open set, where Clω(A) is
the ω−closure set of A. In 2009 Noiri and Noorani [9] introduced
the notion of βω−open set as weak form for a ω−open sets and
a β−open sets. A subset A of a space X is called a βω−open set
if A ⊆ Cl(Intω(Cl(A))). The complement of a βω−open set
is called a βω−closed set, where Intω(A) is the ω−interior set
of A. In 2020 [1] we introduced the notion of Gβω−closed set
as weak form for a βω−closed sets and a β−open sets. A subset
A of a topological space (X, τ) is called generalized βω−closed
(simply Gβω−closed) set if Clβω(A) ⊆ U whenever A ⊆ U
and U is open subset of (X, τ). The complement of Gβω−closed
set is called generalized βω−open (simply Gβω−open) set,
where Clβω(A) is the βω−closure set of A which defined as the
intersection of all βω−closed subsets of X containing A. Similar,
the βω−interior set of A is defined as the union of all βω−open
subsets of X contained in A and is denoted by Intβω(A).

This paper is organized as follows. Section 2 is devoted to some
preliminaries. In Section 3 we introduce the new classes for sepa-
ration axioms in topological spaces, called βω−separation axioms.
Furthermore, the relationship with the other known axioms will be
studied. In Section 4 we introduce also the new classes for separa-
tion axioms in topological spaces, called Gβω−separation axioms.
Furthermore, the relationship with the other known axioms will be
also studied. In Section 5 we introduce the stronger form of con-
nected spaces.

2. PRELIMINARIES
For a topological space (X, τ) and A ⊆ X , throughout this paper,
we mean Cl(A) and Int(A) the closure set and the interior set of
A, respectively.

A subset of topological space is called a clopen set if it is both open
and closed set. A topological space (X, τ) is called 0-dimensional
space [3] if it has a base consisting clopen sets. A topological space
(X, τ) is called a disconnected space [3] if it is the union of two
nonempty subsets A and B such that Cl(A) ∩ B = ∅ and A ∩
Cl(B) = ∅.

THEOREM 2.1. [3] A topological space (X, τ) is a discon-
nected space if and only if it is the union of two disjoint nonempty
open subsets.

THEOREM 2.2. [3] For a topological space (X, τ) and A,B ⊆
X , if B is an open set in X then Cl(A) ∩B ⊆ Cl(A ∩B).

THEOREM 2.3. [8] Every closed set is a g−closed set.

DEFINITION 2.4. [8] A topological space (X, τ) is called a
T1/2−space if every g−closed set is closed set.

THEOREM 2.5. [5] A topological space (X, τ) is T1/2−space
if and only if every singleton set is open or closed set.

THEOREM 2.6. [1] Let (X, τ) be a topological space. If
(X, τ) is a T1/2−space then every Gβω−closed set in X is
βω−closed set in X .

THEOREM 2.7. [3] A topological space (X, τ) is T1−space if
and only if every singleton set is closed set.

THEOREM 2.8. [3] A topological space (X, τ) is regular
space if and only if for each x ∈ X and for each open set N in
X containing x, there is an open set M in X containing x such
that Cl(M) ⊆ N .
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DEFINITION 2.9. [1] A function f : (X, τ) → (Y, ρ) of a
space (X, τ) into a space (Y, ρ) is called:

(1) βω−continuous function if f−1(U) is a βω−open set in X for
every open set U in Y .

(2) Gβω−continuous function if f−1(U) is a Gβω−open set in X
for every open set U in Y .

3. βω−SEPARATION AXIOMS
DEFINITION 3.1. A topological space (X, τ) is called:

(1) β2
ω−space if for two points x 6= y ∈ X in X , there are two

βω−open sets G and U in X such that x ∈ G, y ∈ U and
U ∩G = ∅.

(2) βω−regular space if for each closet set F in X and each x /∈
F , there are two βω−open sets G and U in X such that F ⊆
G, x ∈ U and U ∩G = ∅. A topological space (X, τ) is called
β3

ω−space if it is βω−regular space and T1−space.
(3) βω−normal space if for each two disjoint closet sets F and

M in X , there are two βω−open sets G and U in X such that
F ⊆ G, M ⊆ U and U ∩G = ∅. A topological space (X, τ)
is called β4

ω−space if it is βω−normal space and T1−space.

The proof of the following theorem, Theorem (3.3) and Theorem
(3.4) follow from the fact that open sets are βω−open sets.

THEOREM 3.2. Every T2−space is a β2
ω−space.

THEOREM 3.3. Every regular space is a βω−regular space.

THEOREM 3.4. Every normal space is a βω−normal space.

The converse of the Theorems (3.2), (3.3) and (3.4) are no need to
be true.

EXAMPLE 3.5. Let X = {1, 2, 3}. The indiscrete topologi-
cal space (X,TI), where TI = {∅,X}, is β2

ω−space, βω−regular
space and βω−normal space, since all subsets of countable topo-
logical space are βω−open sets, but it is not T2−space, regular
space or normal space.

THEOREM 3.6. Every β3
ω−space is a β2

ω−space.

PROOF. Let (X, τ) be a β3
ω−space and x 6= y ∈ X be any

points in X . Since X is a T1−space then by Theorem (2.7), {x} is
a closed set in X and y /∈ {x}. Since X is a βω−regular space then
there are two βω−open sets G and U in X such that x ∈ {x} ⊆ G,
y ∈ U and U ∩G = ∅. Hence X is a β2

ω−space.

THEOREM 3.7. Every β4
ω−space is a β3

ω−space.

PROOF. Let (X, τ) be a β4
ω−space. Let F be any closed set in

X and x /∈ F be any points in X . Since X is a T1−space then by
Theorem (2.7), {x} is a closed set in X and F ∩{x} = ∅. Since X
is a βω−normal space then there are two βω−open sets G and U
in X such that x ∈ {x} ⊆ G, F ⊆ U and U ∩G = ∅. Hence X is
a β3

ω−space.

THEOREM 3.8. A topological space (X, τ) is a β2
ω−space if

and only if for each x ∈ X and for y 6= x ∈ X , there is a βω−open
set M in X containing x such that y /∈ Clβω(M).

PROOF. Suppose that (X, τ) is β2
ω−space. Let x ∈ X be any

point in X and y 6= x be any points in X . Then there are two
βω−open sets G and U in X such that x ∈ G, y ∈ U and U ∩
G = ∅. Take M = G is a βω−open set in X containing x and so
y /∈ M ⊆ Clβω(M).

Conversely, Let x 6= y ∈ X be any points in X . By the hy-
pothesis, there is a βω−open set M in X containing x such that
y /∈ Clβω(M). Then X − Clβω(M) is a βω−open set M in
X containing y and M ∩ [X − Clβω(M)] = ∅. Then (X, τ) is
β2

ω−space.

THEOREM 3.9. A topological space (X, τ) is a βω−regular
space if and only if for each x ∈ X and for each open set N in X
containing x, there is a βω−open set M in X containing x such
that Clβω(M) ⊆ N .

PROOF. Suppose that (X, τ) is βω−regular space. Let x ∈ X
be any point in X and N be any open set in X containing x. Then
X − N is a closed set in X and x /∈ X − N . Since (X, τ) is
βω−regular space then there are two βω−open sets G and U in X
such that X − N ⊆ G, x ∈ U and U ∩ G = ∅. Take M = U is
a βω−open set in X containing x. Then M = U ⊆ X − G, this
implies, Clβω(M) ⊆ Clβω(X −G) = X −G ⊆ N .
Conversely, Let F be any closed set in X and x /∈ F . Then
x ∈ X − F and X − F is an open set in X containing x. By the
hypothesis, there is a βω−open set M in X containing x such that
Clβω(M) ⊆ X−F . Then F ⊆ X−Clβω(M) and X−Clβω(M)
is a βω−open set in X . Since M is a βω−open set in X contain-
ing x and M ∩ [X − Clβω(M)] = ∅, then (X, τ) is βω−regular
space.

THEOREM 3.10. A topological space (X, τ) is βω−normal
space if and only if for each closed set F in X and for each open
set G in X containing F , there is a βω−open set V in X containing
F such that Clβω(V ) ⊆ G.

PROOF. Suppose that (X, τ) is βω−normal space. Let F be any
closed set in X and G be any open set in X containing F . Then
X − G is a closed set in X and F ∩ (X − G) = ∅. Since (X, τ)
is βω−normal space then there are two βω−open sets H and U in
X such that X −G ⊆ U , F ⊆ H and U ∩H = ∅. Take V = H
is a βω−open set in X containing F . Then V = H ⊆ X −U , this
implies, Clβω(V ) ⊆ Clβω(X − U) = X − U ⊆ G.
Conversely, Let F and M be any two closed sets in X such that
F ∩ M = ∅. Then M ⊆ X − F and X − F is an open set in X
containing closed set M . By the hypothesis, there is a βω−open
set V in X containing M such that Clβω(V ) ⊆ X−F . Then F ⊆
X−Clβω(V ) and X−Clβω(V ) is a βω−open set in X . Since V
is a βω−open set in X containing x and V ∩ [X −Clβω(V )] = ∅,
then (X, τ) is βω−normal space.

THEOREM 3.11. If a function f : (X, τ) → (Y, ρ) is an injec-
tion βω−continuous and Y is a T2−space then X is a β2

ω−space.

PROOF. Let Y be a T2−space and x 6= y ∈ X be any points
in X . Since f is injection then f(x) 6= f(y) ∈ Y . Then there are
two open sets G and U in Y such that f(x) ∈ G, f(y) ∈ U and
U ∩G = ∅. Then x ∈ f−1(G), y ∈ f−1(U) and

f−1(G) ∩ f−1(U) = f−1(G ∩ U) = f−1(∅) = ∅.

Since G and U are open sets in Y and f is a βω−continuous
then f−1(U) and f−1(G) are βω−open sets in X . Hence X is
a β2

ω−space.

A subset of topological space is called a βω−clopen set if it is both
βω−open and βω−closed set. sets.

DEFINITION 3.12. A function f : (X, τ) → (Y, ρ) of a
topological space (X, τ) into a space (Y, ρ) is called slightly
βω−continuous function if f−1(U) is a βω−clopen set in X for
every clopen set U in Y .
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THEOREM 3.13. Let f : (X, τ) → (Y, ρ) be an injection
slightly βω−continuous function and Y be 0-dimensional. If Y is
a T2−space then X is a β2

ω−space.

PROOF. Let Y be a T2−space and x 6= y ∈ X be any points
in X . Since f is injection then f(x) 6= f(y) ∈ Y . Then there are
two open sets G and U in Y such that f(x) ∈ G, f(y) ∈ U and
U ∩ G = ∅. Since Y is 0-dimensional space there are two clopen
sets G1 and U1 in Y such that f(x) ⊆ G1 ⊆ G and f(y) ⊆
U1 ⊆ U . Then x ⊆ f−1(G1) ⊆ f−1(G) and y ⊆ f−1(U1) ⊆
f−1(U). Then and

f−1(G1) ∩ f−1(U1) ⊆ f−1(G) ∩ f−1(U) = f−1(G ∩ U) = ∅.

Since G1 and U1 are clopen sets in Y and f is a slightly
βω−continuous then f−1(U) and f−1(G) are βω−open sets in
X . Hence X is a β2

ω−space.

THEOREM 3.14. Let f : (X, τ) → (Y, ρ) be an injection
βω−continuous function. If f is an open (or closed) function and
Y is a regular space then X is a βω−regular space.

PROOF. Firstly suppose f is an open function. Let x ∈ X be
any point in X and U be any open set containing x. Then f(x) ∈
f(U) and f(U) is an open set in Y . Since Y is a regular space then
by Theorem(2.8), there is an open set M in Y containing f(x)
such that Cl(M) ⊆ f(U). Since f is a βω−continuous then V =
f−1(M) is a βω−open set in X containing x. Since f is injection
then f−1[Cl(M)] ⊆ f−1[f(U)] ⊆ U. Then

Clβω(V ) = Clβω[f−1(M)] ⊆ f−1[Cl(M)] ⊆ f−1[f(U)] ⊆ U.

Hence by Theorem (3.9), X is a βω−regular space. Secondly, sim-
ilar, if f is a closed function.

THEOREM 3.15. Let f : (X, τ) → (Y, ρ) be an injection
slightly βω−continuous and Y is 0-dimensional space. If f is an
open (or closed) function then X is a βω−regular space.

PROOF. Firstly suppose f is a closed function. Let F be any
closed set in X and x /∈ F . Then f(x) /∈ f(F ) and f(F ) is a
closed set in Y . Then f(x) ∈ Y − f(F ) and Y − f(F ) is an open
set in Y . Since Y is a 0-dimensional space then there is a clopen
set V in Y such that f(x) ∈ V ⊆ Y − f(F ). Since f is injection
then

x ∈ f−1(V ) ⊆ f−1[Y − f(F )] ⊆ X − F.

Since f is a slightly βω−continuous then f−1(V ) is a βω−clopen
set in X containing x and X − f−1(V ) is a βω−clopen set in
X such that F ⊆ X − f−1(V ) Hence X is a βω−regular space.
Secondly, similar, if f is open function.

THEOREM 3.16. Let f : (X, τ) → (Y, ρ) be an injection
βω−continuous function. If f is closed function and Y is a normal
space then X is a βω−normal space.

PROOF. Suppose F and H are any two closed sets in X such
that F ∩H = ∅. since Since f is injection and closed function then
f(F ) and f(H) are closed sets in Y and

f(H) ∩ f(F ) = f(H ∩ F ) = f(∅) = ∅.

Since Y is a normal space then there are two open sets G and U in
Y such that f(F ) ⊆ G, f(H) ⊆ U and U ∩ G = ∅. Since f is
injection then F ⊆ f−1(G), H ⊆ f−1(U) and

f−1(G) ∩ f−1(U) = f−1(G ∩ U) = f−1(∅) = ∅.

Since f is a βω−continuous then f−1(G) and f−1(U) are
βω−open in X . Hence X is a βω−normal space.

THEOREM 3.17. Let f : (X, τ) → (Y, ρ) be an injection
slightly βω−continuous and Y is 0-dimensional space. If f is a
closed function and Y is a normal space then X is a βω−normal
space.

PROOF. Suppose F and H are any two closed sets in X such
that F ∩ H = ∅. Since f is injection and closed function then
f(F ) and f(H) are closed sets in Y and

f(H) ∩ f(F ) = f(H ∩ F ) = f(∅) = ∅.

Since Y is a normal space then there are two open sets G and U
in Y such that f(F ) ⊆ G, f(H) ⊆ U and U ∩ G = ∅. Since Y
is a 0-dimensional space then for every g ∈ f(F ) and u ∈ f(H)
there are clopen sets Uu and Gg in Y such that u ∈ Uu ⊆ U and
g ∈ Gg ⊆ G. Then

f(H) ⊆ ∪{Uu : u ∈ f(H) and Uu is a clopen set in Y } ⊆ U

and

f(F ) ⊆ ∪{Gg : g ∈ f(F ) and Gg is a clopen set in Y } ⊆ G.

This implies,

H ⊆ ∪{f−1(Uu) : u ∈ f(H) and Uu is a clopen set in Y }

⊆ f−1(U) and

F ⊆ ∪{f−1(Gg) : g ∈ f(F ) and Gg is a clopen set in Y }

⊆ f−1(G). Since f is a slightly βω−continuous then f−1(Uu) and
f−1(Gg) are βω−open in X for all g ∈ f(F ) and u ∈ f(H). So
that M = ∪{f−1(Uu) : u ∈ f(H)} and N = ∪{f−1(Gg) : g ∈
f(F )} are βω−open in X and

M ∩N ⊆ f−1(U) ∩ f−1(G) ⊆ f−1(U ∩G) = f−1(∅) = ∅.

Hence X is a βω−normal space.

4. Gβω−SEPARATION AXIOMS
DEFINITION 4.1. A topological space (X, τ) is called:

(1) G2
βω−space if for two points x 6= y ∈ X in X , there are two

Gβω−open sets G and U in X such that x ∈ G, y ∈ U and
U ∩G = ∅.

(2) Gβω−regular space if for each closet set F in X and each
x /∈ F , there are two Gβω−open sets G and U in X such that
F ⊆ G, x ∈ U and U ∩G = ∅. A topological space (X, τ) is
called G3

βω−space if it is Gβω−regular space and T1−space.
(3) Gβω−normal space if for each two disjoint closet sets F and

M in X , there are two Gβω−open sets G and U in X such
that F ⊆ G, M ⊆ U and U ∩ G = ∅. A topological space
(X, τ) is called G4

βω−space if it is Gβω−normal space and
T1−space.

It is clear that every β2
ω−space is a G2

βω−space, every βω−regular
space is a Gβω−regular space and every βω−normal space is a
Gβω−normal space.

THEOREM 4.2. Every G3
βω−space is a G2

βω−space.

PROOF. Similar for Theorem (3.6).

THEOREM 4.3. Every G4
βω−space is a G3

βω−space.

PROOF. Similar for Theorem (3.7).

THEOREM 4.4. Let (X, τ) be a T1/2−space. If X is a
G2

βω−space then X is a β2
ω−space.
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PROOF. For two points x 6= y ∈ X in X , since X is a
G2

βω−space, there are two Gβω−open sets G and U in X such
that x ∈ G, y ∈ U and U ∩G = ∅. Since X is a T1/2−space, then
by Theorem (2.6), G and U are βω−open sets in X . Hence X is a
β2

ω−space.

THEOREM 4.5. Let (X, τ) be a T1/2−space. If X is a
Gβω−regular space then X is a βω−regular space

PROOF. For each closet set F in X and each x /∈ F , since X is
a Gβω−regular space, there are two Gβω−open sets G and U in X
such that F ⊆ G, x ∈ U and U∩G = ∅. Since X is a T1/2−space,
then by Theorem (2.6), G and U are βω−open sets in X . Hence X
is a βω−regular space.

COROLLARY 4.6. Every G3
βω−space is a β3

ω−space.

PROOF. Use above theorem, since every T1−space is
T1/2−space.

THEOREM 4.7. Let (X, τ) be a T1/2−space. If X is a
Gβω−normal space then X is a βω−normal space

PROOF. For each two disjoint closet sets F and M in X , since
X is a Gβω−normal space, there are two Gβω−open sets G and
U in X such that F ⊆ G, M ⊆ U and U ∩ G = ∅. Since X is a
T1/2−space then by Theorem (2.6), G and U are βω−open sets in
X . Hence X is a βω−normal space.

COROLLARY 4.8. Every G4
βω−space is a β4

ω−space.

PROOF. Use above theorem, since every T1−space is
T1/2−space.

THEOREM 4.9. A topological space (X, τ) is G2
βω−space if

and only if for each x ∈ X and for y 6= x ∈ X , there is a
Gβω−open set M in X containing x such that y /∈ Clβω(M).

PROOF. Similar for Theorem (3.8).

THEOREM 4.10. A topological space (X, τ) is Gβω−regular
space if and only if for each x ∈ X and for each open set N in X
containing x, there is a Gβω−open set M in X containing x such
that Clβω(M) ⊆ N .

PROOF. Similar for Theorem (3.9).

THEOREM 4.11. A topological space (X, τ) is Gβω−normal
space if and only if for each closed set F in X and for each open set
G in X containing F , there is a Gβω−open set V in X containing
F such that Clβω(V ) ⊆ G.

PROOF. Similar for Theorem (3.10).

THEOREM 4.12. If a function f : (X, τ) → (Y, ρ) is
Gβω−continuous injection and Y is a T2−space then X is a
G2

βω−space.

PROOF. Let Y be a T2−space and x 6= y ∈ X be any points
in X . Since f is injection then f(x) 6= f(y) ∈ Y . Then there are
two open sets G and U in Y such that f(x) ∈ G, f(y) ∈ U and
U ∩G = ∅. Then x ∈ f−1(G), y ∈ f−1(U) and

f−1(G) ∩ f−1(U) = f−1(G ∩ U) = f−1(∅) = ∅.

Since G and U are open sets in Y and f is a Gβω−continuous
then f−1(U) and f−1(G) are Gβω−open sets in X . Hence X is a
G2

βω−space.

THEOREM 4.13. Let f : (X, τ) → (Y, ρ) be
Gβω−continuous injection function. If f is an open (or closed)
function and Y is a regular space then X is a Gβω−regular space.

PROOF. Similar for Theorem (3.14).

THEOREM 4.14. Let f : (X, τ) → (Y, ρ) be an injection
Gβω−continuous function. If f is closed function and Y is a nor-
mal space then X is a Gβω−normal space.

PROOF. Suppose F and H are any two closed sets in X such
that F ∩H = ∅. since Since f is injection and closed function then
f(F ) and f(H) are closed sets in Y and

f(H) ∩ f(F ) = f(H ∩ F ) = f(∅) = ∅.

Since Y is a normal space then there are two open sets G and U in
Y such that f(F ) ⊆ G, f(H) ⊆ U and U ∩ G = ∅. Since f is
injection then F ⊆ f−1(G), H ⊆ f−1(U) and

f−1(G) ∩ f−1(U) = f−1(G ∩ U) = f−1(∅) = ∅.

Since f is a Gβω−continuous then f−1(G) and f−1(U) are
Gβω−open in X . Hence X is a Gβω−normal space.

5. βω−CONNECTEDNESS PROPERTY
DEFINITION 5.1. Let (X, τ) be a topological space and A,B

be two nonempty subsets of X . The sets A and B are called a
βω−separated sets if Clβω(A) ∩B = ∅ and A ∩ Clβω(B) = ∅.

REMARK 5.2. Let (X, τ) be a topological space. Then

(1) Any βω−separated sets are disjoint sets, since A ∩ B ⊆ A ∩
Clβω(B) = ∅.

(2) Any two nonempty βω−closed sets in X are βω−separated if
they are disjoint sets.

DEFINITION 5.3. A topological space (X, τ) is called a
βω−disconnected space if it is the union of two βω−separated
sets. Otherwise A (X, τ) is called a βω−connected space.

EXAMPLE 5.4. Any a countable topological space (X, τ) is a
βω−disconnected space if X has more that one point.

The proof of the following theorem is clear since Clβω(A) ⊂
Cl(A).

THEOREM 5.5. Every disconnected space is a
βω−disconnected space.

The converse of the above theorem need not be true.

EXAMPLE 5.6. In the topological space (X,T ), where T =
{∅,X} and X = {a, b}, is βω−disconnected space but it is a con-
nected space.

THEOREM 5.7. A topological space (X, τ) is a
βω−disconnected space if and only if it is the union of two
disjoint nonempty βω−open sets.

PROOF. Suppose that (X, τ) is a βω−disconnected space. Then
X is the union of two βω−separated sets, that is, there are two
nonempty subsets A and B of X such that

Clβω(A) ∩B = ∅, A ∩ Clβω(B) = ∅ and A ∪B = X.

Take G = X −Clβω(A) and H = X −Clβω(B). Then G and H
are βω−open sets. Since B 6= ∅ and Clβω(A)∩B = ∅, then B ⊆
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X − Clβω(A), that is, G = X − Clβω(A) 6= ∅. Similar H 6= ∅.
Since Clβω(A)∩B = ∅, A∩Clβω(B) = ∅ and A∪B = X , then

X−(G∩H) = (X−G)∪(X−H) = [Clβω(A)]∪[Clβω(B)] = X.

That is, G ∩H = ∅.
Conversely, suppose that (X, τ) is the union of two disjoint
nonempty βω−open subsets, say G and H . Take A = X − G
and B = X − H . Then A and B are βω−closed sets, that is,
Clβω(A) = A and Clβω(B) = B. Since H 6= ∅ and H ∩G = ∅,
then H ⊆ X − G = A, that is, A 6= ∅. Similar B 6= ∅. Since
G ∩H = ∅ and G ∪H = X , then

Clβω(A)∩B = A∩B = (X−G)∩(X−H) = X−(G∪H) = ∅.

Similar, A ∩ Clβω(B) = ∅. Note that

A ∪B = (X −G) ∪ (X −H) = X − (G ∩H) = X − ∅ = X.

That is, (X, τ) is a βω−disconnected space.

COROLLARY 5.8. A topological space (X, τ) is a
βω−disconnected space if and only if it is the union of two
disjoint nonempty βω−closed subsets.

PROOF. Suppose that (X, τ) is a βω−disconnected space. Then
by Theorem (5.7), (X, τ) is the union of two disjoint nonempty
βω−open subsets, say G and H . Then X − G and X − H are
βω−closed subsets. Since G 6= ∅, H 6= ∅ and X = G ∪ H then
X −G 6= ∅, X −H 6= ∅ and

(X −G) ∩ (X −H) = X − (G ∪H) = X −X = ∅.

Since G ∩H = ∅ then

(X −G) ∪ (X −H) = X − (G ∩H) = X − ∅ = X.

Hence X is the union of two disjoint nonempty βω−closed subsets.
Conversely, suppose that (X, τ) is the union of two disjoint
nonempty βω−closed subsets, say G and H . Take A = X − G
and B = X −H . Then A and B are βω−open sets. Since H 6= ∅
and H ∩ G = ∅, then H ⊆ X − G = A, that is, A 6= ∅. Similar
B 6= ∅. Since G ∩H = ∅ and G ∪H = X , then

Clβω(A)∩B = A∩B = (X−G)∩(X−H) = X−(G∪H) = ∅.

Similar, A ∩ Clβω(B) = ∅. Note that

A ∪B = (X −G) ∪ (X −H) = X − (G ∩H) = X − ∅ = X.

Then by Theorem (5.7), (X, τ) is a βω−disconnected space.

THEOREM 5.9. A topological space (X, τ) is a
βω−connected space if there is no nonempty proper subset
of X which is both βω−open and βω−closed.

PROOF. Suppose that (X, τ) is a βω−connected space. Let A
be a nonempty proper subset of X which is both βω−open and
βω−closed. Then X −A is a nonempty proper subset of X which
is both βω−open and βω−closed. Since A ∪ (X −A) = X , then
by Theorem (5.7), X is a βω−disconnected space and this a con-
tradiction. So there is no nonempty proper subset of X which is
both βω−open and βω−closed set.
Conversely, suppose that (X, τ) is a βω−disconnected space.
Then by Theorem (5.7), X is the union of two disjoint nonempty
βω−open subsets, say A and B. Then X −B = A is βω−closed
subset of X . Since B 6= ∅ and X = A ∪ B then A is a nonempty
proper subset of X which is both βω−open and βω−closed.
This is a contradiction with the hypothesis. Hence (X, τ) is a
βω−connected space.

THEOREM 5.10. Let f : (X, τ) → (Y, ρ) be a
βω−continuous surjection function. If X is a βω−connected space
then Y is connected space.

PROOF. Suppose that Y is a disconnected space. Then by The-
orem (5.7), Y is the union of two disjoint nonempty open sub-
sets, say G and H . Since f is a βω−continuous then f−1(G) and
f−1(H) are βω−open sets in X . Since G 6= ∅, H 6= ∅ and f is a
surjection then f−1(H) 6= ∅ and f−1(G) 6= ∅. Since G ∩H = ∅
and G ∪H = X then

f−1(G) ∩ f−1(H) = f−1(G ∩H) = f−1(∅) = ∅

and

f−1(G) ∪ f−1(H) = f−1(G ∪H) = f−1(Y ) = X.

Hence X is the union of two disjoint nonempty βω−open subsets,
that is, X is a βω−disconnected space. This is a a contradiction.
Hence Y is a connected space.

THEOREM 5.11. Let f : (X, τ) → (Y, ρ) be a slightly
βω−continuous surjection function. If X is a βω−connected space
then Y is connected space.

PROOF. Suppose that Y is a disconnected space. Then by The-
orem (2.1), Y is the union of two disjoint nonempty open subsets,
say G and B. Then G and B are clopen sets in Y . Since f is a
slightly βω−continuous then f−1(G) and f−1(H) are βω−open
sets in X . Since G 6= ∅, H 6= ∅ and f is a surjection then
f−1(H) 6= ∅ and f−1(G) 6= ∅. Since G∩H = ∅ and G∪H = X
then f−1(G) ∩ f−1(H) = ∅ and f−1(G) ∪ f−1(H) = X . Hence
X is the union of two disjoint nonempty βω−open subsets, that is,
X is a βω−disconnected space. This is a a contradiction. Hence Y
is a connected space.
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